
Contents lists available at SciVerse ScienceDirect

Journal of Statistical Planning and Inference

Journal of Statistical Planning and Inference 142 (2012) 2993–2998
0378-37

http://d

n Corr

E-m
journal homepage: www.elsevier.com/locate/jspi
A note on confidence bounds after fixed-sequence multiple tests
Yi-Hsuan Tu a,n, Bin Cheng b, Ying Kuen Cheung b

a Department of Statistics, National Cheng Kung University, 70101 Tainan, Taiwan
b Department of Biostatistics, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032, USA
a r t i c l e i n f o

Article history:

Received 17 March 2011

Received in revised form

9 March 2012

Accepted 12 May 2012
Available online 23 May 2012

Keywords:

Dose–response

Familywise error rate

Minimum effective dose

Monotonicity

Multiple comparisons
58/$ - see front matter & 2012 Elsevier B.V. A

x.doi.org/10.1016/j.jspi.2012.05.002

esponding author.

ail addresses: yhtu@stat.ncku.edu.tw (Y.-H. T
a b s t r a c t

We are concerned with the problem of estimating the treatment effects at the effective

doses in a dose-finding study. Under monotone dose–response, the effective doses can

be identified through the estimation of the minimum effective dose, for which there is

an extensive set of statistical tools. In particular, when a fixed-sequence multiple

testing procedure is used to estimate the minimum effective dose, Hsu and Berger

(1999) show that the confidence lower bounds for the treatment effects can be

constructed without the need to adjust for multiplicity. Their method, called the

dose–response method, is simple to use, but does not account for the magnitude of the

observed treatment effects. As a result, the dose–response method will estimate the

treatment effects at effective doses with confidence bounds invariably identical to the

hypothesized value. In this paper, we propose an error-splitting method as a variant of

the dose–response method to construct confidence bounds at the identified effective

doses after a fixed-sequence multiple testing procedure. Our proposed method has the

virtue of simplicity as in the dose–response method, preserves the nominal coverage

probability, and provides sharper bounds than the dose–response method in

most cases.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

In early stage of drug development, a primary scientific objective is to identify doses that exhibit adequate drug activity,
indicated by a shift of mean response from the control group by a margin greater than a practically significant value d.
When the dose–response is monotone increasing, the effective doses can be identified through the estimation of the
minimum effective dose. At the same time, for the purposes of planning future experiments, it is also important to
precisely assess the effect size at the identified effective doses. There is a long history and large literature on the estimation
of minimum effective dose, including single-step procedures such as Bonferroni’s adjustment and Dunnett’s (1955)
procedure for many-to-one comparisons, step-down methods due to Naik (1975) and Marcus et al. (1976), and a variety of
stepwise procedures described in Tamhane et al. (1996).

On the other hand, relatively little attention has been given to the joint estimation of effective doses and their effect
sizes. In fact, it has long been thought that stepwise procedures do not naturally yield confidence sets through inversion
(Lehmann, 1986) until Bofinger (1987) and Stefansson et al. (1988) who derive confidence bounds following a step-down
test by partitioning principle. Subsequently, Hsu and Berger (1999) propose a dose–response method to find stepwise
confidence bounds without multiplicity adjustment. A difficulty associated with these methods is that the confidence
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Table 1
Dose response data from Hsu and Berger (1999), and 95% simultaneous lower confidence bounds on the treatment effects gi by the Hsu–Berger dose–

response method (HB), the error-splitting method, the partitioning principle by Stefansson et al. (1988, MPGN), and Dunnett’s (1955) method. The

sample size is n¼6 per group.

Dose i Mean SD HBa Lower bounds of gi for at ¼ MPGN Dunnett

0.045 0.040 0.035 0.030 0.025

0 25.5 2.6

1 23.9 4.0 �11.5 �12.7

2 27.7 3.3 �15.9 �8.9

3 33.4 2.3 0.4 0.2 �0.1 �2.0 �3.2

4 40.5 10.5 7.0 7.0 7.0 6.7 6.4 6.0 5.1 3.9

5 57.9 9.9 7.0 7.0 7.0 22.5 23.0 23.4 7.0 21.3

6 74.4 14.6 7.0 7.0 7.0 22.5 23.0 23.4 7.0 37.8

7 73.4 7.6 7.0 7.0 7.0 22.5 23.0 23.4 7.0 36.8

8 73.5 4.5 7.0 7.0 7.0 22.5 23.0 23.4 7.0 36.9

9 76.2 7.9 7.0 7.0 7.0 22.5 23.0 23.4 7.0 39.6

a HB is identical to error-splitting method with at ¼ 0:050 in this example.
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bounds for the treatment effects at the identified effective doses always equal the hypothesized value irrespective of the
data. To illustrate, Table 1 extracts the dose–response data and the confidence bounds given in Hsu and Berger (1999) who
consider d¼ 7. The minimum effective dose is estimated to be dose 4 by the dose–response method of Hsu and Berger
(1999), and dose 5 by the confidence bounds of Stefansson et al. (1988). The treatment effects at all identified effective
doses are estimated with a confidence lower bound of d¼ 7 by the dose–response method, despite the fact that the
observed effect sizes at the higher doses (dose 5 and above) are apparently much larger than 7. In practice, if we use this
lower bound (i.e. 7) as an assumed effect size in the planning of a future study, we will unduly require a much larger
sample size than needed. The fundamental problem is that these procedures use up the error in the testing procedure to
establish confidence direction (i.e. whether there is an effect of the dose) with no margin of error left for estimation of the
effect size. In this paper, we propose a two-step procedure that ‘‘splits the error rate’’ in two parts respectively for testing
and estimation, and apply this procedure to modify Hsu and Berger’s dose–response method.
2. Methods

Consider the balanced one-way layout Yij ¼ miþEij for i¼ 0, . . . ,k and j¼ 1, . . . ,n, where Yij denotes the response of
subject j in dose i, and Eij is a normal random noise with mean 0 and variance s2

e . Let gi ¼ mi�m0 be the treatment effect of
dose i relative to the control, which is commonly estimated by the pairwise statistic Ti ¼ Y i�Y 0, where Y i ¼

Pn
j ¼ 1 Yij=n, so

that varðTiÞ ¼ s2 ¼ 2s2
e=n and corrðTi,TjÞ ¼ r¼ 1=2. In addition, under monotonicity, i.e., g1r � � �rgk, the minimum

effective dose n�minfi : gi4dg is equal to maxfi : girdgþ1; we adopt the convention that minf|g ¼ kþ1 and maxf|g ¼ 0.
Then the ð1�aÞ-upper confidence bound for n is

n̂a ¼maxfi : Tirdþszagþ1, ð1Þ

where za denotes the upper a critical point of standard normal distribution. In general, the variance s2 can be consistently
estimated; here, it is assumed known for brevity. If n̂aZ2, the dose–response method asserts that gi4d for all iZ n̂a and
gn̂a�14T n̂a�1�zas. When n̂a ¼ 1, the stepwise confidence bound is gi4mini ¼ 1,...,kfTi�zasg for all i. The confidence bounds
thus obtained will achieve a 100ð1�aÞ% coverage probability by Theorem 1 in Hsu and Berger (1999) when s2 is
assumed known.

To improve the precision of the confidence bounds at the effective doses while maintaining the same coverage
probability, we propose to estimate n at a slightly more conservative significance level, i.e., n̂at where at ra. With this
estimate of n, the confidence bounds for the effect sizes can be constructed as follows:
1.
 if n̂at ¼ kþ1, then gk4Tk�sza;

2.
 if n̂at 2 f2, . . . ,kg, then gn̂at

�14T n̂at
�1�szt ,gi4maxfT n̂at

�sze,dg for all iZ n̂at ;

3.
 if n̂at ¼ 1, then gi4maxfT1�sze,dg for all iZ1,
where zt and ze are the abbreviations of zat and zae , respectively, for brevity. Let CðTÞ denote the confidence bound for
g¼ ðg1, . . . ,gkÞ

0 by this two-step error-splitting procedure.

Proposition 1. For any at 2 ½0,a�, choose ae such that

prfZ1ominðzt ,zeÞ,Z2ozeg ¼ 1�a, ð2Þ
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where ðZ1,Z2Þ
0 is distributed as bivariate normal with standard normal marginal and a correlation coefficient of 0.5 between Z1

and Z2. Then, prfg 2 CðTÞgZ1�a.

The condition (2) in Proposition 1 provides some guidance on how the error probabilities, at and ae, should be chosen.
First, consider the case at ¼ a, under which condition (2) imposes ae ¼ 0. In this case, the bound CðTÞ is identical to the
confidence bound due to the Hsu–Berger dose–response method when n̂a41; however, it is easy to verify that the former
is more conservative than the latter when n̂a ¼ 1. Therefore, setting at ¼ a is not an admissible choice.

Second, consider the case at raeoa so that zerzt . Then condition (2) does not depend on at . In other words, we can
increase the test level at without affecting the overall coverage probability, as long as at rae. A practical implication is that
we should set at to be at least as large as ae.

From now on , we will focus on aerat oa so that n̂ar n̂at , under which it is possible for the error-splitting approach to
yield a more conservative estimate of n than the Hsu–Berger dose–response method. The motivation, on the other hand, is
to improve the confidence lower bounds at the estimated effective doses. When at ¼ ae, the lower bound CðTÞ

gi4maxðT n̂at
�sze,dÞ ¼maxðT n̂at

�szt ,dÞ4d ð3Þ

for the estimated effective doses, i.e., iZ n̂at , if 2r n̂ar n̂at rk. The last inequality in (3) is a result of the definition of n̂at in
(1). If the true gi at the minimum effective dose is far greater than d, the gain over the dose–response method (which gives a
lower bound of d) is potentially substantial. To preserve the gain for the general case aerat , the comparison (3) suggest
choosing a value of ae that is not much smaller than at; see also the simulation results in Section 3. It is important to note
that our proposed CðTÞ is not uniformly better than the Hsu–Berger dose–response method in terms of the lower bound. In
particular, when n̂a ¼ n̂at ¼ 1, the lower bound CðTÞ gives gi4maxðT1�sze,dÞ for all i, whereas the dose–response method
gives gi4mini ¼ 1,...,kfTi�szag. Depending on the shape of the dose–response curve, the dose–response method can likely be
superior to CðTÞ on the event fn̂a ¼ n̂at ¼ 1g since the Hsu–Berger method does not require the monotonicity assumption.

Our discussion has been assuming a known s2
e . In situations when the variance s2

e is unknown, we could apply the
error-splitting approach in an analogous manner by replacing s2

e with the pooled sample variance, and using the critical
values with respect to a t distribution with ðn�1Þðkþ1Þ degrees of freedom. It is easy to see that this procedure will achieve
the nominal coverage probability asymptotically. For small-to-moderate sample sizes, intuitively, this approach will be
conservative because t distribution has a heavier tail than the normal distribution. In the simulation study that follows, we
will implement this procedure and examine the performance of the error splitting procedure in finite sample settings.

3. Numerical studies

We first consider the dose response data in Hsu and Berger (1999), who compared nine doses to a placebo with six
subjects per dose level. The goal was to identify doses having a mean that is 7 mg/kg greater than that of the placebo, i.e.,
d¼ 7. Table 1 shows the 95% confidence lower bounds given by the error-splitting method with at ¼ 0:045,0:040,0:035,
0:030,0:025, with respective ae ¼ 0:008,0:014,0:020,0:026,0:025 so that overall a¼ 0:05 in accord with condition (2). The
results due to the Hsu–Berger dose–response method, the partitioning principle (Stefansson et al., 1988), and Dunnett’s
(1955) method are also given. When at is close to the nominal a, the error-splitting method behaves similarly to the dose–
response method, and selects dose 4 as the minimum effective dose. However, it does not materialize the advantage of our
proposed method as ae is extremely small. When at r0:035, the error-splitting method estimates n with dose level 5 but
provides a much more encouraging effect size at this dose (and above) than the dose–response method. The partitioning
principle also estimates n with dose 5 but fails to use the observed data to estimate the effect size. In this example,
Dunnett’s method appears to be superior to the error-splitting approach. As we will see in the following simulation,
Dunnett’s method tends to yield sharper lower bounds on the higher doses but also tends to over-estimate n more often
than the error-splitting approach.

Based on the dose–response data in Table 1, we next simulated data from the normal distributions with a common
standard deviation se ¼ 7:8 at k¼9 doses with six subjects at each dose; we considered three sets of mean dose–response
so that the true n¼ 4. The first scenario has a linear dose–response with g¼ ð�7;0,7;14,21;28,35;42,49Þ0. The second
scenario is obtained from an Emax model (Ting, 2006) with mi ¼ 25þ51i6:5=ði6:5þ46:5

Þ, i¼ 0, . . . ,9, yielding g¼ ð0;1,7;26,
41;48,50;50,51Þ0. The third scenario has a plateau dose–response pattern with g¼ ð3;3,3;15,46;46,46;46,46Þ0. Table 2
gives the coverage probability (cov), the probability of selecting the true minimum effective dose (pcs), and the median of
the lower bound at the truly effective doses based on 5000 simulation runs under each scenario. The coverage probability
is estimated by the proportion when the lower bounds cover the true means of the nine doses simultaneously. Because the
lower bounds may take values on negative infinity, we use medians (instead of means) of the lower bounds in the
comparison.

As expected, the precision of CðTÞ improves for all gi’s with i4 n̂at as at decreases and ae increases; on the other hand,
we are slightly surprised to see non-trivial improvement even with small ae’s, namely when at ¼ 0:040 and 0.045. Also as
expected, the pcs tends to increase with at . However, we find that its impact on the error-splitting approach is mild
when compared to Dunnett’s method. In general, the performance of the error-splitting approach is somewhere between
Hsu–Berger dose–response method and Dunnett’s method. Based on this simulation, setting at ¼ 0:035 appears to strike a
good balance between lower bound precision and pcs.



Table 2
Simulation results of Hsu–Berger dose–response method, Dunnett’s method, and the error-splitting method for at ¼ 0:045,0:040,;035,;030,;025. The

error-splitting method with at ¼ 0:050 yields identical results to the dose–response method.

at cov pcs lb4 lb5 lb6 lb7 lb8 lb9

(a) Linear dose–response, g¼ ð�7;0,7;14,21;28,35;42,49Þ0

HB 0.957 0.392 6.2 7.0 7.0 7.0 7.0 7.0

0.045 0.954 0.375 6.0 7.1 7.8 7.8 7.8 7.8

0.040 0.953 0.359 5.7 8.3 9.1 9.1 9.1 9.1

0.035 0.951 0.334 5.4 9.2 10.1 10.1 10.1 10.1

0.030 0.951 0.313 5.0 9.9 10.8 10.9 10.9 10.9

0.025 0.955 0.290 4.6 10.0 11.1 11.2 11.2 11.2

Dunnett 0.942 0.188 3.0 10.0 17.2 24.1 31.1 38.0

(b) Emax dose–response, g¼ ð0;1,7;26,41;48,50;50,51Þ0

HB 0.950 0.943 7.0 7.0 7.0 7.0 7.0 7.0

0.045 0.949 0.945 14.2 14.3 14.3 14.3 14.3 14.3

0.040 0.949 0.950 15.3 15.4 15.4 15.4 15.4 15.4

0.035 0.950 0.952 16.0 16.2 16.2 16.2 16.2 16.2

0.030 0.950 0.955 16.6 16.7 16.7 16.7 16.7 16.7

0.025 0.954 0.957 16.6 16.8 16.8 16.8 16.8 16.8

Dunnett 0.942 0.950 15.0 30.0 37.2 39.1 39.1 40.0

(c) Plateau dose–response, g¼ ð3;3,3;15,46;46,46;46,46Þ0

HB 0.954 0.522 7.0 7.0 7.0 7.0 7.0 7.0

0.045 0.952 0.499 7.0 15.5 15.5 15.5 15.5 15.5

0.040 0.951 0.479 6.8 25.9 25.9 25.9 25.9 25.9

0.035 0.950 0.457 6.6 28.5 28.5 28.5 28.5 28.5

0.030 0.950 0.426 6.2 30.3 30.3 30.3 30.3 30.3

0.025 0.954 0.402 5.9 31.3 31.3 31.3 31.3 31.3

Dunnett 0.942 0.262 4.0 35.0 35.2 35.1 35.1 35.0

cov, coverage probability; pcs, probability of selecting n; lbk, the median of lower bound of treatment effect at dose k, for k¼ 4, . . . ,9.

Table 3
Coverage probability of the error-splitting method under non-normal data for given at .

at Linear Emax Plateau

Scaled t3 DE Scaled t3 DE Scaled t3 DE

0.050 0.944 0.958 0.944 0.952 0.946 0.956

0.045 0.944 0.958 0.944 0.953 0.946 0.957

0.040 0.944 0.958 0.944 0.954 0.946 0.958

0.035 0.944 0.957 0.944 0.955 0.947 0.955

0.030 0.946 0.955 0.946 0.956 0.947 0.954

0.025 0.952 0.959 0.952 0.959 0.951 0.958
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While the error-splitting procedure is asymptotically valid as long as the random error Eij has zero mean and finite
variance, we examined its robustness in finite sample sizes in terms of coverage probability when the error distribution is
non-normal. In particular, we performed additional simulations under the same sets of means with the errors generated
from scaled t3 and double exponential (DE) distributions with standard deviation se ¼ 7:8. As indicated in Table 3, the
error-splitting approach achieves nominal coverage even when the sample size is as small as n¼6 per group.

We also examined the robustness of the error-splitting method under unequal sample sizes in the one-way layout.
While Proposition 1 does not apply to these scenarios, the simulation results in Table 4 shows that mild imbalance in the
one-way layout does not affect the coverage probability. It will indeed be interesting to extend our results to cover
unbalanced one-way layout. Intuitively, we may extend Proposition 1 using the generalized Slepian’s inequality for
elliptically contoured distributions (Tong, 1980), although the partitioning arguments used in the proof will require
nontrivial manipulations, and warrant further investigation.

4. Proof of Proposition 1
Lemma. Let Yi, i¼ 0, . . . ,n, nZ3, be independent real valued random variables and let Yi, i¼ 1, . . . ,n, be identically

distributed. Then

prfX14a1,X2oa2,Xð12Þ
2 BgZprfa1oX1oa2,Xð12Þ

2 Bg,

where X ¼ ðX1, . . . ,XnÞ
0
¼ ðY1�Y0, . . . ,Yn�Y0Þ

0, Xð12Þ
¼ ðX3, . . . ,XnÞ

0 and B is a Borel set in the n�2-dimensional Euclidean space.



Table 4
Simulation results of the error-splitting method under various dose–response curves with n¼ 4. Sample size for control and each level are 6, 5, 4, 3, 4, 4,

7, 8, 8, and 6.

at cov pcs lb4 lb5 lb6 lb7 lb8 lb9

(a) Linear dose–response, g¼ ð�7;0,7;14,21;28,35;42,49Þ0

HB 0.968 0.340 5.1 7.0 7.0 7.0 7.0 7.0

0.045 0.964 0.321 4.7 7.0 7.7 7.7 7.7 7.7

0.040 0.962 0.300 4.4 7.6 9.2 9.2 9.2 9.2

0.035 0.960 0.279 4.0 8.5 10.3 10.3 10.3 10.3

0.030 0.959 0.254 3.4 9.2 11.2 11.2 11.2 11.2

0.025 0.962 0.234 2.9 9.3 11.5 11.5 11.5 11.5

Dunnett 0.942 0.156 1.8 8.8 17.3 24.8 31.7 38.1

(b) Emax dose–response, g¼ ð0;1,7;26,41;48,50;50,51Þ0

HB 0.954 0.935 7.0 7.0 7.0 7.0 7.0 7.0

0.045 0.952 0.936 11.9 12.2 12.2 12.2 12.2 12.2

0.040 0.952 0.937 13.3 13.6 13.6 13.6 13.6 13.6

0.035 0.952 0.937 14.1 14.5 14.5 14.5 14.5 14.5

0.030 0.955 0.936 14.8 15.2 15.2 15.2 15.2 15.2

0.025 0.959 0.932 14.7 15.2 15.2 15.2 15.2 15.2

Dunnett 0.942 0.897 13.8 28.8 37.3 39.8 39.7 40.1

(c) Plateau dose–response, g¼ ð3;3,3;15,46;46,46;46,46Þ0

HB 0.963 0.461 6.6 7.0 7.0 7.0 7.0 7.0

0.045 0.961 0.443 6.3 25.6 25.6 25.6 25.6 25.6

0.040 0.960 0.420 6.0 27.7 27.7 27.7 27.7 27.7

0.035 0.959 0.397 5.7 29.3 29.3 29.3 29.3 29.3

0.030 0.958 0.371 5.3 30.6 30.6 30.6 30.6 30.6

0.025 0.961 0.339 4.9 31.3 31.3 31.3 31.3 31.3

Dunnett 0.942 0.212 2.8 33.8 35.3 35.8 35.7 35.1

cov, coverage probability; pcs, probability of selecting n; lbk, the median of lower bound of treatment effect at dose k, for k¼ 4, . . . ,9.
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Proof. Define the cdf’s of Y0 and Yi, i¼ 1, . . . ,n, by F0 and F, respectively, then it holds

prfX14a1,X2oa2,Xð12Þ
2 Bg ¼

Z 1
�1

prfY14a1þt,Y2oa2þt,ðY3�t, . . . ,Yn�tÞ 2 Bg dF0ðtÞ

¼

Z 1
�1

½Fða2þtÞ�Fða1þtÞFða2þtÞ�prfðY3�t, . . . ,Yn�tÞ 2 Bg dF0ðtÞ

Z

Z 1
�1

½Fða2þtÞ�Fða1þtÞ�prfðY3�t, . . . ,Yn�tÞ 2 Bg dF0ðtÞ

¼ prfa1oX1oa2,Xð12Þ
2 Bg:

To prove Proposition 1, we define Ri ¼ fReject H0j for ir jrk; accept H0,i�1g, for i¼ 1, . . . ,kþ1, be the event of detecting
dose i as the minimum effective dose in the testing procedure. In particular, R1 ¼ fReject H01, . . . ,H0kg ¼

fTi4dþszt for all i 2 f1, . . . ,kgg, and Rkþ1 ¼ fAccept H0kg ¼ fTkrdþsztg. Let CðTÞ denote the confidence bound for
g¼ ðg1, . . . ,gkÞ

0 generated by the error-splitting method based on T ¼ ðT1, . . . ,TkÞ
0 and CiðTÞ denote the conference bound

for g when the event Ri occurs such that prfg 2 CðTÞg ¼
Pkþ1

i ¼ 1 prfg 2 CiðTÞ,Rig. Partition the parameter space,
Y¼ fg : �1og1r � � �rgko1g, into kþ1 disjoint parameter space, Yi, where Ykþ1 ¼ fg : gkrdþsðzt�zaÞg and Yi ¼ fg :
gk4dþsðzt�zaÞ,gi4d,gi�1rdg, for i¼ 1, . . . ,k. Define aj,i ¼ Pfg 2 CjðTÞ,Rj9g 2 Yig, 1r i,jrkþ1, where Pf�9g 2 Yig denotes
probability computed when g 2 Yi. Then Pfg 2 CðTÞ9g 2 Yig ¼

Pkþ1
j ¼ 1 aj,i. It is immediately seen that aj,i ¼ 0 for

1r jo irk. &

Proof of Proposition 1. Without loss of generality, we set d¼ 0, s¼ 1. Let Zi ¼ ðTi�giÞ, i¼ 1, . . . ,k. When g 2 Ykþ1,
Pfg 2 CðTÞ9g 2 Ykþ1gZprfZkrza,Zkrzt�gkg ¼ prfZkrzag ¼ 1�a.

Define Aj ¼ fZj4zt�gjg, Bj ¼ fzt�gjoZjozeg, B0j ¼ fzt�gjoZjominðzt ,zeÞg, Cj ¼ fZjoztg, C0j ¼ fZjozeg, and
C00j ¼ fZjominðzt ,zeÞg, j¼ 1, . . . ,k. For g 2 Yk, Pfg 2 CðTÞ9g 2 Ykg ¼ prfBk \ Ck�1gþprfAc

kgZprfC0k \ C00k�1g ¼ 1�a, where the
last equality is from (2).

For 1r irk�1 and ir jrkþ1, aj,i can be expressed as

aj,i ¼

prfAk \ � � � \ Aiþ1 \ Bi \ Ci�1g, j¼ i,

prfAk \ � � � \ Ajþ1 \ Bj \ Ac
j�1g, iþ1r jrk,

prfAc
kg, j¼ kþ1,

8><
>:
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where Aj
c

denotes the complement of Aj. A set of the form Ak \ � � � \ As is understood as O, the whole sample space,
whenever s4k. We prove by induction that for any l such that ir lrk�1

Xl

j ¼ i

aj,iZ

prfAk \ � � � \ Alþ2 \ B0lþ1 \ Blg, if l�i is even,

prfAk \ � � � \ Alþ2 \ Blþ1 \ B0lg, if l�i is odd:

(
ð4Þ

First, ai,i ¼ prfAk \ � � � \ Aiþ1 \ Bi \ Ci�1gZprfAk \ � � � \ Aiþ2 \ B0iþ1 \ Big by the Lemma, hence (4) holds when l¼ i, i4k�1.
Note that, when l¼ i¼ k�1, ak�1,k�1 ¼ prfB0k \ Bk�1g. Suppose (4) holds for l, we will prove that it also holds for lþ1rk�1.
If l�i is an even number, then

Xl

j ¼ i

aj,iþalþ1,iZprfAk \ � � � \ Alþ2 \ B0lþ1 \ BlgþprfAk \ � � � \ Alþ2 \ Blþ1 \ Ac
l g

ZprfAk \ � � � \ Alþ2 \ B0lþ1 \ ðBl [ Ac
l Þg

¼ prfAk \ � � � \ ALþ2 \ B0lþ1 \ C0lg

ZprfAk \ � � � \ Alþ3 \ ðAlþ2 \ C0lþ2Þ \ B0lþ1g

¼ prfAk \ � � � \ Alþ3 \ Blþ2 \ B0lþ1g,

where the third inequality is by the Lemma. The case when l�i is an odd number can be proved using the above technique
and the fact that Ac

j [ B0j+C 00j for j¼ 1, . . . ,k. Therefore, (4) holds for all lrk�1 by the mathematical induction principle.
For g 2 Yi, 1r irk�1, set l¼ k�1 in (4) and assume that k�1�i is even

Pfg 2 CðTÞ9g 2 Yig ¼
Xk�1

j ¼ i

aj,iþak,iþakþ1,i

ZprfB0k \ Bk�1gþprfBk \ Ac
k�1gþprfAc

kg

ZprfB0k \ C0k�1gþprfAc
kg

ZprfC00k \ C0k�1g

¼ 1�a,

where the first inequality follows from (4) and the last equality is by (2). The result can be proved similarly when k�1�i is
odd. &
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